Documentation
type family (a :: k) ≡ (b :: k) :: Bool where ... Source #
Equations
| (a :: k) ≡ (a :: k) = 'True | |
| (_1 :: k) ≡ (_2 :: k) = 'False | |
type family (x :: 𝔹) ⩔ (y :: 𝔹) :: 𝔹 where ... Source #
type family (x :: 𝔹) ⩓ (y :: 𝔹) :: 𝔹 where ... Source #
data (m :: 𝐍) < (n :: 𝐍) where infix 4 Source #
Constructors
| W_LT :: forall (m :: 𝐍) (n :: 𝐍). m ≺ n => m < n | |
Instances
Instances details
data (m :: 𝐍) ≤ (n :: 𝐍) where infix 4 Source #
Constructors
| W_LTE :: forall (m :: 𝐍) (n :: 𝐍). m ≼ n => m ≤ n | |
Instances
Instances details
(⊚♯) :: forall (n₁ :: 𝐍) (n₂ :: 𝐍) (n₃ :: 𝐍). (n₁ ≤ n₂) -> (n₂ < n₃) -> n₁ < n₃ Source #
(♯⊚) :: forall (n₁ :: 𝐍) (n₂ :: 𝐍) (n₃ :: 𝐍). (n₁ < n₂) -> (n₂ ≤ n₃) -> n₁ < n₃ Source #
type family (xs :: [a]) ⧺ (ys :: [a]) :: [a] where ... Source #
Equations
| ('[] :: [a]) ⧺ (ys :: [a]) = ys | |
| (x ': xs :: [a]) ⧺ (ys :: [a]) = x ': (xs ⧺ ys) | |
newtype 𝕀64 (n :: 𝐍) Source #
Instances
Instances details
newtype 𝐼S (n :: 𝐍) a Source #
Instances
Instances details
class AppendS (t :: 𝐍 -> k -> Type) where Source #
Methods
(⧺♮) :: forall (n₁ :: 𝐍) (a :: k) (n₂ :: 𝐍). t n₁ a -> t n₂ a -> t (n₁ + n₂) a Source #
Instances
Instances details