Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Documentation
class (Set k s, FunctorM d, OFunctorM d, KFunctorM k d, OKFunctorM k d, BiFunctorM d, OBiFunctorM d, KBiFunctorM k d, OKBiFunctorM k d, Functor d, OFunctor d, KFunctor k d, OKFunctor k d, BiFunctor d, OBiFunctor d, KBiFunctor k d, OKBiFunctor k d, forall x. CSized (d x), forall x. Eq x => Eq (d x), forall x. Ord x => Ord (d x), forall x. ToIter (k ∧ x) (d x), forall x. Single (k ∧ x) (d x), forall x. Lookup k x (d x), forall x. Null (d x), forall x. Append x => Append (d x), forall x. Monoid x => Monoid (d x), forall x. POrd x => POrd (d x), forall x. Bot (d x), forall x. Join x => Join (d x), forall x. JoinLattice x => JoinLattice (d x), forall x. Meet x => Meet (d x), forall x. Difference x => Difference (d x)) => Dict k s d | d -> k, d -> s where Source #
(↦) :: k -> a -> d a infixr 1 Source #
dadd :: k -> a -> d a -> d a Source #
drem :: k -> d a -> d a Source #
dupd :: k -> (a -> 𝑂 a) -> d a -> d a Source #
dlteBy :: (a -> a -> 𝔹) -> d a -> d a -> 𝔹 Source #
dunionBy :: (a -> a -> a) -> d a -> d a -> d a Source #
dinterBy :: (a -> b -> c) -> d a -> d b -> d c Source #
dsdiffBy :: (a -> b -> 𝑂 a) -> d a -> d b -> d a Source #
(⋿) :: forall a. k -> d a -> 𝔹 infix 4 Source #
(⫑) :: Eq a => d a -> d a -> 𝔹 infix 4 Source #
(⩌) :: d a -> d a -> d a infixl 5 Source #
(⩍) :: d a -> d a -> d a infixl 6 Source #
(⧅) :: Eq a => d a -> d a -> d a infixl 5 Source #
dminView :: d a -> 𝑂 ((k ∧ a) ∧ d a) Source #
dmaxView :: d a -> 𝑂 ((k ∧ a) ∧ d a) Source #
dkeyView :: k -> d a -> 𝑂 (a ∧ d a) Source #
dminElem :: d a -> 𝑂 (k ∧ a) Source #
dmaxElem :: d a -> 𝑂 (k ∧ a) Source #
dkeep :: s -> d a -> d a Source #
dtoss :: s -> d a -> d a Source #
dict𝐼 :: 𝐼 (k ∧ a) -> d a Source #
Instances
Ord k => Dict k (𝑃 k) ((⇰) k) Source # | |
Defined in UVMHS.Core.Data.Dict (↦) :: k -> a -> k ⇰ a Source # dadd :: k -> a -> (k ⇰ a) -> k ⇰ a Source # drem :: k -> (k ⇰ a) -> k ⇰ a Source # dupd :: k -> (a -> 𝑂 a) -> (k ⇰ a) -> k ⇰ a Source # dlteBy :: (a -> a -> 𝔹) -> (k ⇰ a) -> (k ⇰ a) -> 𝔹 Source # dunionBy :: (a -> a -> a) -> (k ⇰ a) -> (k ⇰ a) -> k ⇰ a Source # dinterBy :: (a -> b -> c) -> (k ⇰ a) -> (k ⇰ b) -> k ⇰ c Source # dsdiffBy :: (a -> b -> 𝑂 a) -> (k ⇰ a) -> (k ⇰ b) -> k ⇰ a Source # (⋿) :: k -> (k ⇰ a) -> 𝔹 Source # (⫑) :: Eq a => (k ⇰ a) -> (k ⇰ a) -> 𝔹 Source # (⩌) :: (k ⇰ a) -> (k ⇰ a) -> k ⇰ a Source # (⩍) :: (k ⇰ a) -> (k ⇰ a) -> k ⇰ a Source # (⧅) :: Eq a => (k ⇰ a) -> (k ⇰ a) -> k ⇰ a Source # dminView :: (k ⇰ a) -> 𝑂 ((k ∧ a) ∧ (k ⇰ a)) Source # dmaxView :: (k ⇰ a) -> 𝑂 ((k ∧ a) ∧ (k ⇰ a)) Source # dkeyView :: k -> (k ⇰ a) -> 𝑂 (a ∧ (k ⇰ a)) Source # dminElem :: (k ⇰ a) -> 𝑂 (k ∧ a) Source # dmaxElem :: (k ⇰ a) -> 𝑂 (k ∧ a) Source # dkeep :: 𝑃 k -> (k ⇰ a) -> k ⇰ a Source # dtoss :: 𝑃 k -> (k ⇰ a) -> k ⇰ a Source # dict𝐼 :: 𝐼 (k ∧ a) -> k ⇰ a Source # |
dunionByOn :: Dict k s d => d a -> d a -> (a -> a -> a) -> d a Source #
dinterByOn :: Dict k s d => d a -> d b -> (a -> b -> c) -> d c Source #
okmapAtM𝐷 :: forall m k a. (Monad m, Ord k) => k -> (𝑂 a -> m (𝑂 a)) -> (k ⇰ a) -> m (k ⇰ a) Source #
bimapM𝐷 :: forall m k a b c. (Monad m, Ord k) => (a -> m c) -> (b -> m c) -> (a -> b -> m c) -> (k ⇰ a) -> (k ⇰ b) -> m (k ⇰ c) Source #
obimapM𝐷 :: forall m k a b c. (Monad m, Ord k) => (a -> m (𝑂 c)) -> (b -> m (𝑂 c)) -> (a -> b -> m (𝑂 c)) -> (k ⇰ a) -> (k ⇰ b) -> m (k ⇰ c) Source #
kbimapM𝐷 :: forall m k a b c. (Monad m, Ord k) => (k -> a -> m c) -> (k -> b -> m c) -> (k -> a -> b -> m c) -> (k ⇰ a) -> (k ⇰ b) -> m (k ⇰ c) Source #
okbimapM𝐷 :: forall m k a b c. (Monad m, Ord k) => (k -> a -> m (𝑂 c)) -> (k -> b -> m (𝑂 c)) -> (k -> a -> b -> m (𝑂 c)) -> (k ⇰ a) -> (k ⇰ b) -> m (k ⇰ c) Source #
bimap𝐷 :: forall k a b c. Ord k => (a -> c) -> (b -> c) -> (a -> b -> c) -> (k ⇰ a) -> (k ⇰ b) -> k ⇰ c Source #
obimap𝐷 :: forall k a b c. Ord k => (a -> 𝑂 c) -> (b -> 𝑂 c) -> (a -> b -> 𝑂 c) -> (k ⇰ a) -> (k ⇰ b) -> k ⇰ c Source #
kbimap𝐷 :: forall k a b c. Ord k => (k -> a -> c) -> (k -> b -> c) -> (k -> a -> b -> c) -> (k ⇰ a) -> (k ⇰ b) -> k ⇰ c Source #
okbimap𝐷 :: forall k a b c. Ord k => (k -> a -> 𝑂 c) -> (k -> b -> 𝑂 c) -> (k -> a -> b -> 𝑂 c) -> (k ⇰ a) -> (k ⇰ b) -> k ⇰ c Source #
data family Elem :: ★ -> ★ Source #
Instances
data family ESet :: ★ -> ★ Source #
Instances
data family EDct :: ★ -> ★ -> ★ Source #